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ABSTRACT

This report is the second in a series devoted to the development
of a cross-sectional plotting capability for the numerical control APT
system in use at NRL. The report covers the development of equations
in a computational form for the plotting of intersections between a plane
and a cylinder, and a plane and a sphere. Initially, a local coordinate
system for a cylinder is established in one of twelve possible ways.
Subsequently, the intersection of the cylinder with aplane is considered
in the general (infinite) case, in a bounded situation, and in the degenerate
condition when the cross-sectional plane is parallel to the axis of the
cylinder. The development for the sphere concludes the equation pre-
sentation and is obviously less complicated than the cylinder case
because of the symmetry, but similar to the extent that a circular in-
tersection and one degenerate case, a tangent point, can be obtained.
Computer-generated plots illustrating the types of intersections
developed in the report are included. These plots were made using a
program that was written to implement the equations developed in this
report. The computer program is described in detail in "CROSEC, A
Fortran IV - APT Program to give Orthographic, Section and Definable
Perspective Views of a Planar-Curved Surface," NRL Report 7228.

PROBLEM STATUS

This is an interim report on a continuing problem.

AUTHORIZATION

NRL Problem ZOO-01

Manuscript submitted September 24, 1970.
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CROSEC COMPUTATIONAL MANUAL I r-
(NRL APT SYSTEM)

INTRODUCTION

Background

The objective of this NRL problem is to develop the facility for producing cross-
sectional plots of a part defined in the APT program. NRL Report 7025 (Ref. 1) de-
scribes a procedure for obtaining cross-sectional plots of plane intersections, and it is
recommended that the reader be familiar with its contents. Briefly, it presents the
several types of plane equations and a method for defining a coordinate system in a cross-
sectional plane, and describes the computer program, CROSEC, which computes points
of intersection between any two planes and the cross-sectional plane. CROSEC then,
from these points, defines and plots the lines of intersection.

The next consideration in this problem, the subject of this report, is the develop-
ment of the ability to plot cylindrical and spherical cross sections. The scope of this
report is the exposition of the computational forms needed to obtain all types of cylindri-
cal and spherical cross sections and the presentation of some computer-generated plots
demonstrating the correctness of the forms.

Overview

The report commences with the presentation of some basic equations, then specifies
twelve situations designed to cover all possible cylinder orientations. These result in a
set of direction cosines, thereby establishing an orthogonal coordinate system within a
cylinder from the information provided in the APT canonical form. For some of these
situations the direction cosines are constant, but for others they must be computed.
Only one of these twelve possible solutions applies for any given cylinder. The cylinder's
coordinate system and its set of direction cosines (which are relative to the APT part-
programmer's XYZ coordinate system) are next used to describe the cylinder in the
XYZ system. It is then possible to solve the cylinder's equation simultaneously with the
equation of the cross-sectional plane (called the HOPE plane), obtaining as a result the
equation of the intersection expressed in the XYZ system. This intersection is then
transformed into the HOPE plane coordinate system (1) for two-dimensional plotting
purposes. This is a complicated step involving many terms. Once accomplished, how-
ever, a simplification is possible because all z'terms in the HOPE system can be set to
zero.

The resulting two-variable, second-degree, intersection polynomial equation in the
HOPE plane must now be analyzed to determine if it is a circle, an ellipse, or a de-
generate form, namely a pair of parallel lines or a single line. Tests to make these
determinations are in terms of the invariants of a two-dimensional, second-degree poly-
nominal. If the cylinder is considered to be finite in length, additional computations are
necessary. If an ellipse of intersection is present, it must be determined whether or
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not it is totally within the cylinder. If not, only a part of the ellipse is valid as the curve
of intersection. The possible curves of intersection for the bounded cylinder are a circle,
an ellipse, a truncated ellipse, a rectangle, or a line segment. The rectangle and line
segment cases arise when the HOPE plane is parallel to the cylinder's axis but still
close enough to intersect it. It is necessary to create a discrete set of points for plot-
ting. The number of points created should be sufficient to present a plot that is pleasing
to the eye. For a long, thin ellipse, for example, as high as 400 line segments are
necessary to produce a satisfactory curve. The method followed for the circle and
ellipse computes the discrete point coordinates relative to the center of the curve, fol-
lowed by the addition of the center coordinates and rotation, as required, to properly
locate the curve. In order to plot the finite line segments or rectangles, it is necessary
to determine the HOPE plane coordinates of the points where the lines pierce the end
planes of the cylinder.

A similar process is also followed for the case of a plane intersecting a sphere but
with the great simplification of a singly oriented local reference system because of the
symmetry. For the sphere there is neither an infinite case nor a parallel case, only a
tangent point, a circle, or no intersection.

Equations for all of the steps described above are presented in this report. The re-
port is concluded with some illustrative cross-sectional plots obtained by use of a com-
puter program written to implement these equations. This program is called CROSEC
MOD 2. 0 and is described in Ref. 2. The basic material used in the development of
these equations has been Ref. 3, Korn and Korn's "Mathematical Handbook for Scientists
and Engineers, " in the author's opinion, an excellent reference book.

CYLINDER COORDINATE SYSTEM

To begin the development of the cylinder coordinate system, consider the canonical
form of the cylinder and the base plane.

The APT Cylinder

The APT canonical form for the cylinder contains a point, a vector, and a radius.
The point is on the axis which has the direction of the vector, and the radius is the radius
of a circular cross section. Thus in the APT form

CYL 1 = CYLINDER/CANON, xc, yc, z,, u,, usI u., r,

where

x,, Yr zc are the point coordinates,
uX, UY, u. are the vector's direction cosines, and

r is the radius.

Cylinder's Base Plane

A plane through the cylinder's defined point, with the vector as its normal, can be
defined in normal form as

ux x + uy y + uZ z = ux Xc + uy Yc + uz (c .

2
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This is conveniently considered, by definition, to be the base plane. Thus, for example,
if

(X,, act Z,) =(°, O. 1),

and

(U., UY, uz) =(O. O. 1),

substitution into Eq. (1) gives

O *x+O± y+ 1 z=O * 0+0 *0+ 1 *1,

which yields z = 1. A second example where

(xc Yc~ z)(3 3 3)

and

(u, uX, u )z(# A A)

yields, upon substitution into Eq. (1),

1 1 1 1 1 1 1 11

I__ 3 Liz_ 3{~3 3T F3 3F

Or, simplifying, x + y + z = 1, the much-used equiangular plane of Ref. 1.

Cylinder Equation

An infinite cylinder can be mathematically defined by an equation of the form

x + 2 = r2. (2)

This is an equation of a circle in which no z value is specified, and therefore z can have
an infinite number of values. The little letter c centered above the x and y designates a
coordinate system which is local to the cylinder and whose z axis is identical with the
axis of the cylinder with direction cosines ux, uy. u2 . It follows, naturally, to equate the
cylinder's base plane with the *4 plane. Then if x is found by means next presented in
this report, Y can be defined by taking the cross product of 2 and R.

Thus, to summarize the method of obtaining the cylinder coordinate system: Z is
known because of the cylinder's axis, X must be tested for and computed if it is not a standard
case, and i is computed from 2 and R's direction cosines.

The k Axis

Table 1 lists twelve x orientations. The first six represent vector orientations
parallel to the plus and minus directions of one of the major axes (x, Y, z). Each "stand-
ard" solution has a predetermined direction cosine matrix that preserves right-handedness.
Numbers 7, 8, and 9 are intersection solutions for the situation in which the c point is
on one of the major axes. Numbers 10, 11, and 12 are intercept solutions for the situation
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wherein the c point is not on an axis and at least one component of the axis's direction
cosines is nonzero. The last two columns of the table give some sample APT definitions
and vector sketches for clarity, one for each of the twelve cases.

The Intersection Situations

If the vector u is not oriented in one of the six directions along the major axes, then
the scheme is to use the axis point to aid in defining the X, axis. Consider the three
situations when the point is on one of the three major axes X, Y, or Z (for these purposes
consider the origin to be on the X axis). For example, if the axis point is on the X axis
(xc, Yc, zc) = (xc, 0, 0) then the intersection of the base plane (Eq. (1)) with the XY plane
will define the Xc axis in this fashion.

Case 7

General base plane: u. x + uY y + uz z = ux xc + uY YC + uZ Ze (1)

Base Plane for (xc, o, o): ux x + uY y + uz = ux xc (3)

xY plane: z = 0 (4)

Intersection of
base plane with xy plane: u. x + Uy Y = ux xc (5)

Expressed as a line: y = (- ux/uy) x +(ux/uy)xc (6)

Xc's direction cosines:

t =Cos (an- (U.#)

t =sin (an-, U. )), (7)

tan 3 1 = O.

A restriction (uy? 0) is imposed to prevent an undefined tangent. This means the axis
vector must not be parallel to the Y axis. See Fig. 1 for an illustration of Case 7.

When the axis point is on the Y axis, the intersection of the base plane with the YZ
plane is used to define the X, axis. This forms Case 8. Its equations are given next.

Case 8

Base Plane for (0, yc, 0): uX x + uy Y + uz Z = uY YC (8)

Y Z plane: x = 0 (9)

Intersection: u y + u z = u y(10

4
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Ux~~~~~~~~~

Fig. 1 - Case 7 occurs when y
the cylinder's axis vector is
not directed along a major
axis (X, Y, or Z) and the axis =( X x ) xx
point is on the X axis. The Y Y
cylinder system's X, axis is
defined by the intersection of \
the cylinder's base plane with
the XY plane. Small sketch x
shows orientation of cylin-
der's axis vector.

Expressed as a line: z (-u/u 7) y + (uy/u)Y (11)

Xc 's direction cosines:

t1 l = 0,

t2l = cos (tan- 1 (-UY/Uz)),

t3l = sin (tan-, (u /uz)) (12)

In Case 8 the vector component uz must be nonzero.

Case 9 occurs when the axis point is on the Z axis. In this case the intersection of
the base plane with the XZ plane is used. Its equations are given next.

Case 9

Base plane for (0, 0, z,): u. x + uy y + uZ z = uZ ZC (13)

XZ plane: y = 0 (14)

Intersection: UL x + uz z = uz zc (15)

Expressed as a line: x = (- uz/ux) z +(uz/u.)zc (16)

Xc's direction cosines:

tll = sin (tan (- u/u")),

t2 1 = 0,

31 cos (tan 1 (-uZ/u)). (17)

In Case 9, u. must be nonzero.

5
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The Intercept Situations

The intercept situation is characterized by the point c being off any major axis and
the cylinder axis's vector being in a skewed position, not oriented with any major axis.
Figure 2 illustrates Case 10. The symbol xI, called x intercept, is the x value at which
the cylinder's base plane is pierced by the x axis. It is obtained by setting y and z to
zero in Eq. (1) and solving for x. Therefore,

XI =

uXxc + uyyc + uz ZC
(18)

ux

ANDER BASE PLANE

Fig. 2 - Intercept solution on x axis.

If ux were equal to zero, the plane would be paralled to the x axis and xi would be unde-
fined. This is the reason the intercept cases have a qualification that one of the direction
cosines of the cylinder axis vector must be nonzero. The local axis x is equated to the
directed line segment from the c point (xc, Yc z,) to the intercept point (xI, 0, 0). Its
direction cosines are (Ax/xL, -Yc/xL, -Zc/xL),

where,

Ax = xi - XC' (19)

(20)XL = (0 - y) 2 + (0 _ Z)2

Cases 11 and 12 are interpreted in a similar manner for intercepts with the v axis
and the z axis, respectively. The results are listed in Table 1, which summarizes all
twelve cases.

6



Table 1
Solutions for Cylinder Coordinate Systems

StandardMatrix Cmputatio Form 1TPoint and Vector
Point ~~~Vector ofSadr arxcmuainform Sample APT Definition for a ISketch for APT!Number1 PointZof Direction Cosines or for t

mX- Y- Zc U. I I' for of Di cm axes C-axis Direction cosi Cylinder Meeting the Spec ficatons Smple Cylinder

Positive F0, 1 , 01] _t[",I t21, t311
1 Any set of values X 0, 0, 1 tl2 t2 2 3 t CYL 1 = CYLNDR/CANON, 0,0,0, 1, 0,0, 1

direction 1, 0, 0 t13, t2 3 , t3

Negative F0, 0, I1
2 Any set of values X 0, 1, 0 CYL 2= CYLNDR/CANON, 0, 0, 0, -1, 0, 0, 1

direction [1, 0, 01

Positive F0, 0, 1
3 Any set of values y 1, 0, 0 CYL 3 =CYLNDR/CANON, 0,0,0,0,1,0,1 /

direction 0, 1, 0

Negative 1, '0, 01
4 Any set of values 0, 0 1l CYL 4= CYLNDR/CANON, 0,0,0,0,-1, 0,1

direction L 0, -1,01
Positive F 1, o 0, 0

5 Any set of values z 0 1, 0 CYL 5= CYLNDR/CANON, 0,0,0,0,0,1,1 I
direction * 0, 0, 11
Negative F0, 1, 0

Any set of values z 1 0 01 CYL 6= CYLNDR/CANON 0,0,0,0,0 1,1
direction o0, 0, -1 1

XY Intersection U inXY

7 Must be at the origin y t = tan-I U - t1l =cos , t2 1 = sin , t31 0 CYL 7= CYLNDR/CANON, 0, 0, 0, 1/2, 213 0, 1 K

YZIntersection
8 Y axisMust be on the = CYL8= CYLNDR/CANON, 0, 1, 0, 0, 12, 45, 1

xz Intersection Ul / inXZ
9 Must be on the o/\ CYL 9e= CYLNDR/CANONt 0

2
0- 1, 1/2, °, 4L3Y 1 

z axis +=tant- t =sin ,, t2 1 = 0, t 3 1 c= cos 9 = CYLDRCA 2 0,,,120

X Intercept where
Mu Xaxist no on the = ts t 2 1 =

2
_c tl=j, Z c =xU.+YCuY+zCuY)/uX].X= CYL 10= CYLNDR/CANON, 1,1,0, 1/2,f1, 0,1

XL XL XL XL= (AX2 + Y2 + z2)Ui

Y Intercept where U in YZ
11 M-u sY I be o t C y C 2 CYL 11= CYLNDR/CANON, 0, 1, 1,0, 1/2, '1F, 1 Y

Y axis Al0 tui= L, t2 l YL tl YL .. Ay[xu+ yu + u)/ 2

U parallel to YZ

12 Must nxit e on the Z Intercept ~Yc Az where [( CYL 12= CYLNDR/CANON, 1,0, 1,0, 1/2,.'23 1
Zaxis t

1 1
-,t

2
l t

3
l 2' LZ-

ZL ZL CL = 2 2 A2)ZL (x + +AI

z

0

~-a

a IT TcCV1)fMn- -. -... IIJ . .. ' . 1
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INTERSECTION BETWEEN HOPE PLANE AND INFINITE CYLINDER

Cylinder Defined in xyz System

After a cylinder has been identified in the defined symbol table and its coordinate
system established in one of twelve possible ways, its equation can be expressed in the
form of a circle, Eq. (2), in the cylinder coordinate system.

To relate this cylinder to the xyz coordinate system, it is necessary to express its
equation in that system. The conversion matrix is the vehicle designed to accomplish
this task. With respect to the XYZ system, the k axis has direction cosines tl, t2 l, and
t31. Similarly the t axis has direction cosines t12, t22 , and t32 . Finally, the Zc axis has
direction cosines t, 3 , t23 , and t3 3. The equations which allow for both translational and
rotational conversion from the cylinder coordinate system to the xyz coordinate system
are

x = t 1 x + t21 y + t3 l z-K, (21)

= t12 x + t2 2 y + t3 2 z -K2 , (22)

and

= t13x + t 2 3y + t 33 z - K3; (23)

where

K1 = tI Xc + t2 l Yc + t 3 1 Z, (24)

K2 = tl2Xc + t 22 Yc + t 3 2 Zc, (25)

K3 = tl 3xc + t 23 Yc + t 3 3 Zc (26)

This point (xc, yc zc) is part of the canonical form. It is on the axis of the cylinder and
is in the xyz system. It should be noted that K,, K2, and K3 are constants.

To express the cylinder in the XYZ system it is necessary to square Eqs. (21) and
(22), substitute them into Eq. (2), and regroup the resulting terms. One grouping that
provides a balanced appearance and has some computational benefits takes the following
form:

(a,,x + a,2Y + a13 z + al4) X

+ (a21 x + a2 2 y + a23 Z + a24) Y

+ (a3 1 x + a3 2 y + a33 z + a34) Z

+ (a 4 lx + a4 2 y + a43 z + a4 4) = 0. (27)

These aik (i, k = 1, 2, 3, 4) coefficients are computed as follows:

8
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all t2 +t 2
- 11 + 12

a12 = t12 t 2 1 + t12 t 2 2

a13 = t1 i t31 + t12 t3 2

a = -(K1 t~l + K2 t 12 )

a3 1 a13

a32 =a 23

a33 31 + t32

a3 4 = -(K1 t 31 + K2 t3 2 )

(28)

(29)

(30)

(31)

(36)

(37)

(38)

(39)

a21 = a12

a2 2 2 + 22
t2 1 +t 2 2

a2 3 = t2 1 t3 1 + t2 2 t3 2

a2 4 = -(Ki t2 1 + K2 t2 2 )

a41 = a14

a4 2 = a2 4

a4 3 = a3 4

a4 4 = 12 + K2 -2

Intersection in the XYZ System

The simultaneous solution of the HOPE plane equation and the cylinder equation is
accomplished by adding the first-degree coefficients and the constant terms of their
respective equations, The HOPE plane in the XYZ system is expressed as,

A^ x+ B.y + C.z = D, (See Ref. 1, p. 1) (44)

The cylinder has just been developed as Eq. (27). Expressing the simultaneous solution
of these two equations in the form of replacement statements,

a24-* a24 + B a34 * a34 + 2 a4 4 *-a 4 4 -D (45)

is a computer-oriented convenience and should be easily understood. The remaining
coefficients are unchanged. The intersection in the xYz system has been found.

Intersection in HOPE Plane Coordinate System

Once the coefficients that define the curve of intersection, expressed in the xyz sys-
tem, have been obtained, the next step is to compute a similiar set of coefficients in the
HOPE plane coordinate system, another coordinate conversion. The creation of the
HOPE plane coordinate system is quite thoroughly discussed in Ref. 1. It should suffice
here merely to define the terms and give the equations.

If with respect to the Xyz system the HOPE plane coordinate system has an Xh axis
with direction cosines h,1, h21, h3l, a Yh axis with direction cosines h12 , h22, h3 2, and a
Zh axis with direction cosines h13 , h23 , h3 3; then the equations which allow for both trans-
lational and rotational conversion are

x = hll Xh + hl2yh + hl 3 Zh + XO'

y = h2l xh + h 2 2 Yh + h 2 3 Zh + Yo ,

(46)

(47)

z = h3 l Xh + h 3 2 yh + h3 3 Zh + ZO I (48)

(32)

(33)

(34)

(35)

(40)

(41)

(42)

(43)

a1 4 + A2

and

9
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In these conversion equations x0, y0, and zo are the XYZ coordinates of the HOPE plane
coordinate system's origin. These are computable from the the HOPE constants as

X0 = D-A, y0 = D.B, z0 = D^ C. (49)

Substituting Eqs. (46), (47), and (48) into Eq. (27), followed by regrouping, creates
a set of Pi k(i" k = 1, 2, 3, 4) coefficients similiar in positional definition to the ai, k
series of Eq. (27), which are defined as follows:

p1 1 = (a1 1 hl21 + a2 2 h21 + a3 3 h31 + 2a,2 h 1 h2

+ 2a1 3 h1 , h3 l + 2a23 h2 1 h3 l) (50)

P12 = (all h1 , h 12 + a2 2 h2 1 h2 2 + a3 3 h3 1 h 3 2

+ a12 (hi, h 2 2 + h2 1 h 1 2 ) + a13 (h1 , h3 2 + h3 1 h1 2 )

+ a23 (h2 l h32 + h22 h3 l)) (51)

P1 3 = (all h1 , h 1 3 + a2 2 h 2 , h 2 3 + a3 3 h 3 l h3 3 + a1 2 (h1 1 h2 3 + h 2 l h 1 3 )

+ a 13 (h1 1 h33 + h3 l h13 ) + a23 (h21 h33 + h23 h3 l)) (52)

P1 4 = (all h1 , x0 + a2 2 h2 1 yO + a3 3 h3 1 zo + a12 (h2 1 xo + h1 1 yo)

+ a13 (h 31 xO + h11 zo) + a23 (h31 Yo + h21 Zo)

+ a14 h1l + a24 h21 + a34 h3 l) (53)

P21 = P12 (54)

P22 = (all hl 2 + a22 h22 + 533 h32 + 2a1 2 h 12 h2 2

+ 2a13 h12 h3 2 + 2a23 h22 h3 2) (55)

P23 = (a, 1 h 1 2 h 1 3 + a2 2 h2 2 h 2 3 + a3 3 h 3 2 h3 3

+ al2 (h 1 2 h2 3 + h2 2 h13 ) + a1 3 (h 12 h 3 3 + h13 h 3 2 )

+ a23 (h2 2 h3 3 + h32 h23 )) (56)

P24 = (a, 1 h12 xO + a22 h2 2 Yo + a3 3 h3 2 zo + al 2 (h 2 2 xo + h1 2 Yo)

+ a 13 (h32 xo + h12 ZO) + a23 (h3 2 YO + h22 zo)

+ a 14 h12 + a24 h22 + a34 h3 2) (57)
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P3 1 = P1 3

P32 = P2 3

p33 = a1 h23 + a 22 h2 3 + a33 h33 + 2a12 h13 h23 + 2a 13 h13 h3 3 + 2a 23 h2 3 h3 3

C-

1-

(I8.

(58) 1

(59)

(60)

p 3 4 = (a11 h13 xO + a22 h 2 3 YO + a3 3 h3 3 zO + a1 2 (h 2 3 xO + h 1 3 YO)

+ a13 (h 3 3 x0 + h13 zO) + a2 3 (h3 3 yO + h2 3 zo)

+ a14 h13 + a24 h23 + a34 h33 )

P41 = P1 4

P4 2 = P2 4

P4 3 = P3 4

P4 4 all x0 + a2 2 Yo + a3 3 zo + 2a 2 xOY + 2a 1 3 xO zO

+ 2a23 YO zO + 2a14 xO + 2a24 YO + 2a3 4 zO + a44

(61)

(62)

(63)

(64)

(65)

Simplification, Reduction to Two Variables

With the curve of intersection defined in the HOPE plane coordinate system, a
simplification is achieved by eliminating all Zh terms, since by definition zh = 0 in the
HOPE plane. The result is a second-order equation in two variables of the form

(ell Xh + e12 Yh + e 1 3 ) xh + (e 21 xh + e2 2 Yh + e 2 3 ) Yh + (e 3 1 xh + e3 2 Yh + e3 3 ) = 0 (66)

The following relationships exist between the ei j (i j = 1, 2, 3) and the Pi i (i j =
1, 2, 3, 4) coefficients:

el, = pl1

e,2 = P1 2

e1 3 = P1 4

e2 = P2 1

e22 = P2 2

e23 = P24

e31 = P4 1

e32 = P42

e3 3 = p4 4 (67)

Analysis Using Invariants

The computer is now asked to interpret the intersection. Is it a circle or an ellipse?
This analysis is accomplished by use of the invariants of a plane second-order curve.
These three invariants are defined as follows:

wl = ell + el2' (68)

ell ej 2
W2='

.e2l e22
(69)
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ell e12 e13

w3 = e2 1 e2 2 e2 3

e3 1 e3 2 e3 3 (70)

If w3 = 0, a proper conic section is not present. This means that the HOPE plane is
parallel to the axis of the cylinder. Three possible situations can exist for a parallel
plane. (a) If the plane is parallel and also outside the cylinder wall there is no intersec-
tion at all. (b) If the plane is tangent to the cylinder wall the intersection is a single,
straight line. (c) If the parallel plane is inside the cylinder wall, the intersection con-
sists of two parallel lines. The equations for the parallel case are developed in the
fifth section of this report.

The intersection is an ellipse if the following conditions are true:

1) W3 • O. (71)

2) w2 > 0, (72)

3) w3/w1 < O. (73)

A circle is present if, in addition to the above three conditions, the following two
conditions are also true:

4) ell = e 22, (74)

5) e12 = . (75)

The center (c., cy) of either a circle or an ellipse of intersection can be determined
in an identical manner from Eqs. (76) and (77):

CX = -(e 1 3 e2 2 -e 12 e2 3 )/W 2 , (76)

Cy = -(el, e2 3 -e1 3 e2 1)/w 2 - (77)

The invariants wl and w2 can be used to form a second-degree equation, called the
characteristic equation, using the symbol K as the variable. This is shown in Eq. (78):

X2 _ w1 X + w2 = 0. (78)

The roots of the characteristic equation, x1 and X2, are called the eigenvalues of the
e. matrix. If the roots are equal the presence of a circle is confirmed and its radius r
is computed as

-W
3-= . (79)
1

If 1 > X2 the presence of an ellipse is confirmed. Its constants are computed as follows:

Semimajor axis a = Aw3 A (80)
2lx

12
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Semiminor axis b = < (81)
F72

1 2

Eccentricity e= X (82)

Elliptical Rotation

Another constant related to the ellipse which it is important to know is the amount
of rotation (if any) from a horizontal position the major axis exhibits when it is plotted.
This quantity is represented by ¢. Now rotation other than 0° and 900 is present if the
xy term (i. e., coefficient e1 2 ) is nonzero. To distinguish between 00 and 900 when e12

is zero, set x = cX and solve e22 y2+ 2e2 3 Y + (e3 3 + ell c,2 + 2e2 3 CX) = 0 for y. The solution
to this quadratic should be a perfect square with the two roots y1 and Y2 equal to each
other in magnitude. If such is not the case an error exists. If Y1 = Y2,= b, then ¢ = 0°.
If Y, = Y2 = a, then ¢ = 90°.

The general solution for the rotation involves an arc tangent and has two possible
solutions in the range 00 to 360°, the first of which is identified as k1 and is defined as

= 2 arctan (ell - e2 2 ) (83)

Assuming that the arc tangent function returns the principal value, then the second pos-
sible solution, identified as ¢2' is defined as

02 = ¢1 + 900. (84)

A special case must be accounted for if (el 1-e 2 2 ) = 0; then Eq. (83) is unsolvable. In
such a case ¢k = 450-

It is possible to select the proper rotation between 01 and 02 by a series of tests.
If the xy term is negative (e12 < 0), then the major axis of the ellipse lies in the first and
third quadrants. Conversely, if the xy term is positive (e12 > 0), the major axis lies in
the second and fourth quadrants. Since the arc tangent function returns a principle
value -45°' ¢ ' • +45°, and because of Eq. (84), +45°• '02 < 1350. Therefore one of
four possible situations exists;

if e 12 < 0 and 41 > 0 then ¢ = 1, or

if e12 < 0 and ¢2 < 90' then ¢= ¢2, or

if el2 > 0 and ¢1 < 0 then¢ = 1, or

if el2 > 0 and¢ 2 > 900 then¢= ¢ 2

Discrete Set of Points

In order for a plot to be made discrete, perimeter points must first be computed.
These perimeter point computations are conveniently made using the intersection curve
constants relative to the center.

13
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For a circle of intersection,

x = r cos 0,

(85)

y = r sin 6,

where r is obtained from Eq. (79) and 0, the polar angle, is illustrated in Fig. 3.

lY

9

{8=0}

(a) CIRCLE

t(ao) ~ x

(b) ELLIPSE

Fig. 3 - Angle of rotation 6 used in computation of perimeter points

For an ellipse of intersection,

x = r' cos 6

(86)y = r' sin 0,

where

1 - e2 Cos 0 (87)

and the semimajor axis b is computed from Eq. (81), the eccentricity e from Eq. (82),
and the polar angle 6 is illustrated in Fig. 3b.

When the discrete points for the ellipse are computed in this fashion, the possible
rotation of the ellipse has not been taken into account. Therefore if ¢k 0, transforma-
tion is needed. The rotational transformation is defined as follows:

x¢, = x cos ¢ + y sin ¢,

y¢, =-x sin ¢ + y cos¢, (88)

where

(x, y) are the values of the point before applying the rotation,

(X:,, y, ) are the values of the point after applying the rotation, and ¢ = -

14
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Translation of the set of discrete points for both the circle and ellipse intersection
is accomplished by

X -. + cx,

y -*- y + cy . (89)

After the necessary translation and rotation the plot of the circle or ellipse will be prop-
erly oriented with other intersections in the HOPE plane. (There is, of course, no
rotation needed for the case of a circle of intersection. ) This completes the equation
development for the situation wherein the HOPE plane intersects a cylinder which is
considered to be infinite in extent, so that the curve of intersection is either a circle or
a complete ellipse.

INTERSECTION BETWEEN HOPE PLANE AND BOUNDED CYLINDER

So far the development has created a cylinder coordinate system--twelve possible
ways--, identified the curve of intersection between a cylinder and the HOPE plane--
circle or ellipse--, and computed for plotting purposes a discrete set of points lying on
the curve's perimeter. For these considerations the cylinder has been mathematically
infinite in extent, so that any elliptical intersection is a complete ellipse.

Consider now the situation where the cylinder is finite in length, made so by two
parallel planes, t units apart. These planes are called individually the base plane and
the top plane, but jointly referred to as the bounding'planes, or if considering a general
case a single plane is called a bounding plane. Thus, for example, it can be said that
both bounding planes are perpendicular to the axis of the cylinder. The finite cylinder is
in effect then a right circular cylinder, the only type (other than infinite) being considered
in this report, thereby ruling out such surfaces as a tabulated cylinder.

An ellipse of intersection can be truncated by either, or both, bounding planes. A
truncation line is defined as part of the line of intersection between the HOPE plane and
a bounding plane. A line of truncation is parallel to the minor axis of the ellipse and lies
within the ellipse, except for its two end points that lie on the perimeter like the discrete
plotting points. A line of truncation is illustrated in Fig. 4.

For computing purposes it is necessary to have a test algorithm for the existence or
nonexistence of a line of truncation when an ellipse of intersection is present. This is
done in two steps. First, the existence of all or part of the ellipse between the planes is
decided upon, and second, having confirmed that they exist, we compute the end point
values of the truncation line or lines as needed.

The Ellipse and the Bounding Planes

In considering the question of whether or not at least a part of the ellipse lies between
the bounding planes it is convenient to deal with one angle and two distances. The angle
6 is the angle between the HOPE plane and a bounding plane. Excluding 0", which is the
special case of a circle when the HOPE plane is parallel to the bounding planes, there is
no angular restriction. The plane of the ellipse can have any inclination to the bounding
planes and still lie between them. It can also lie outside them. This is only the start of
the test. It merely says that if 6 exists and is not 00, the possibility of the ellipse lying
between the bounding planes exists because the ellipse exists somewhere in the infinite
cylinder. The existence of an ellipse is confirmed.

15
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Z 2 \ \ \ ~~~~PBLAANEE

TRUNCATION \\

MINOR _ 
AXIS/ 0\ 

AXIS \

Figure 4 - Truncation line parallel to minor axis,
and the major axis endpoint distances from the base
plane, z 1 and Z2

The equation for 6 is

= arccos (A U + B uY + CuZ). (90)

In this equation A, B, C are the direction cosines of the HOPE plane and uL,, u , uz are
the direction cosines of the bounding planes (as well as being the axis vector components).

The two distances involved are the distances of the ends of the ellipse's major axis
from the base plane. In the cylinder's coordinate system let these two distances be z1

and z 2 , corresponding to the positive and negative ends, respectively, of the major axis
when the ellipse is considered centralized about the origin. One of six possible situa-
tions can then exist:

1. z, < 0 and z 2 < 0

2. z1 > t > o and Z2 > t > 0

3. < z1 < E and <Z 2 < t

(a) z1 < ° and 0 < Z2 < t

4. or

(b) z 2 < ° and 0 < zi < t

ellipse lies below the finite cylinder, or

ellipse lies above the finite cylinder, or

ellipse lies entirely within the finite cylinder
without truncation, or

only the base plane is involved in ellipse
truncation, or

16



NRL REPORT 7202

(a) 0 < z1 ' t and z2 > t

5. or

(b) 0 < < <t and z1 > oC

(a) z 1 < 0 and Z2 > t

6. or

(b) Z2 < o and z1 > t

only the top plane is involved in the ellipse
truncation, or

both the base plane and the top plane are
involved in ellipse truncation.

Figure 4 illustrates a 4(a) condition for z, and Z2.

The first test then involves the angle between the HOPE plane and the base plane
and the distances from the endpoints of the major axis to the base plane and determines
exactly if truncation is involved once, or twice, or not at all.

Truncation Line Computation

The second test is considered only if the first test is true, that at least a part of the
ellipse exists between the bounding planes. If the line of intersection between the HOPE
plane and a bounding plane intersects the ellipse in two points, then a truncation line
exists. The second test culminates, specifically, in seeking two unequal roots to a
quadratic equation. The base plane situation will be considered in detail, and the simi-
larities for the top plane merely touched on.

The base plane equation is

U. x + uY y + uZ z = U. Xc + u Yc + uZ Z (91)

The HOPE plane equation is

Ax + By + Cz = D. (92)

Now since both of these equations are in the XYZ coordinate system, the intersection
between them is also in this system and is

(A - u.) x + (B - u ) y + (C - uz) z = [D - (uX XC + u YC + UZ zc)] (93)

P= A - ux, Q= B - uY, R= C - uz,

S = [D - (uX xc +u yc+ UZ zc)].
(94)

Then

Px + Qy + Rz = S. (95)

Let

17
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Now the conversion equations from the xYZ system to the HOPE plane coordinate sys-
tem are

X = t1l X' + t 12 Y' + t13 Z' + XO

y = t2 1 X' + t 2 2 Y' + t23 Z' + YO

z = t3 l x' + t3 2 Y + t3 3 z + ZO (96)

where (xo, y0 , zo) is the origin of the HOPE system at (DA, DB, DC). Substituting (96)
into (95) gives

(Pt1 l + Qt21 +Rt31 ) x + (Pt l2 +Qt 22 +Rt 32 )y' + (Pt l 3 +Qt 23 +Rt 33 ) z' =S-(xo P+yOQ+ zOR). (97)

Let

P' = (Ptll+ Qt2 1 + Rt3l)

Q, = (P t 12 + Q t22 + R t3 2 ),

R' = (P t 13 + Q t23 + R t3 3 )I

S' = S-(xoP + yo Q + zo R). (98)

Then

P' x' + Q' y' + R' z' = S' . (99)

Equation (99) is the line of intersection between the HOPE plane and the base plane
expressed in HOPE plane coordinates. Setting z' = 0 and solving for x',

or

x' = m y' + b, (100)

where

m=(pQ) b = p, (101)

Now the ellipse can be defined in the HOPE system as

elI x'2 + 2el2 x' y' + e22 Y'
2 + 2el3 x' + 2e23 y' + e33 = 0 (102)

Substituting (100) for x' in the ellipse Eq. (102) and gathering terms gives a quadratic
in y,

a y'2 + 2b'y + c' = 0, (103)

where

a' = el, m2 + 2e1 2 m + e22,

b = el, mb + e12b + e13 m + e23,

c' = e 1 b2 + e33 + 2el3 b. (104)

18
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If the two roots of Eq. (103) are y; and y4, then

xi = myi +b

(105)

x2 = my + b,

and the two points on the circumference of the ellipse defining the truncation line in the
base plane are ii, y ) and (x2, y ).

The situation for the top plane is similar. In this case the bounding plane equation is

(106)Ux x + uY y + uZ z = U. tx + uY tY + uZ tz,

where tx, tY, and tz are defined as

tX = xC + UX x '

ty = YC +u x XC,

z c z x It,

resulting in two points defining the truncation line for that plane.

The second test, then, is determining if two real and unequal roots for y' exist in
Eq. (102), first for the base plane and then for the top plane; and, if successful, the test
results in the computation of the HOPE plane coordinates (x, y') of the endpoints of the
truncation line on the perimeter of the ellipse.

It then remains merely to define the proper subset of the discrete points which along
with the truncation line define the bounded intersection. An xy' view of a truncated
ellipse is shown in Fig. 6, and a perspective view in Fig. 5. The algorithm that selects
the subset of points must take several facts into account. The most important of these
are

1. The center of the ellipse does not necessarily coincide with the origin of the
HOPE system.

2. The truncation line, while parallel to the minor axis, can lie on either side of
the center of the ellipse.

Fig. 5 - Perspective view of an ellipse of
intersection truncated by a top bounding
plane

(107)

and

C:R
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Fig. 6 -HOPE plane view of an ellipse
truncated by a top bounding plane

3. Depending on which bounding plane is being considered, different criteria exist
for accepting or rejecting points as the scan of the discrete set of points is made.

4. The relative locations of the starting point of the discrete set of points and the
points (xi, y,), (x2, y2).

This concludes the discussion relevant to the truncation of an elliptical intersection
resulting from the bounding planes of a finite cylinder.

HOPE PLANE PARALLEL TO CYLINDER AXIS

The case of the HOPE plane intersecting both an infinite and a finite cylinder has
been presented. Remaining to be considered is a special case, the situation wherein
the HOPE plane is parallel to a bounded cylinder axis but close enough to intersect the
cylinder. Under these circumstances the intersection becomes a single line or a pair of
parallel lines. Such solutions are termed degenerate.

It is rewarding in this situation to consider the vector diagram of Fig. 7 because it
provides a spatial picture. With the origin at 0 and the cylinder axis point at (xc, yc, zc),
vector a is defined between these two points. The axis of a finite cylinder is defined in
space by the vector X, and vector b joins the origin with the tip of B. These vectors will
be used as the discussion continues.

Distance from Cylinder Axids Point to HOPE Plane

The perperdicular distance from the cylinder a-Nis point to the HOPE plane is in-
volved in the derivation of the equations in this section. This distance is identified by do
(see Fig. 7) and is found by

20
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Fig. 7 - Showing do, the perpedicular distance
from cylinder axis 2 to the HOPE plane, and
the vector a and b from the origin 0 to the
base and tip of 2, respectively. b

A xc + B yc + C ZC - D

(A2 + B2 + C2)V/

A, B, C, D are the HOPE plane constants, and (xc, Yc~ zc)
dinates of the cylinder axis point.

c:

:2!

21 C-
:>-.

we_1

(108)

are the coor-

The sign of the denominator's square root in Eq. (108) is chosen opposite to the sign of
D. For example, if D is positive the negative square root is used. This establishes the
convention in that if do is positive, the HOPE plane lies between the origin and the cyl-
inder axis point; and that if do is negative, the HOPE plane lies beyond the cylinder axis
point. This sign convention for do is shown in Fig. 8a and 8b.

A line connecting the low point, (see below) with the high point, (see below) is parallel to
the axis of the cylinder partly defined by the axis point (xc, yC, z) and the axis vector 2
(missing and not needed in this context is the radius r). The same line connecting the low
point with the high point lies in the HOPE plane since both points lie in the HOPE plane.
Therefore, it follows that the low point and the high point can be used to define the termin-
ation points for the line, or lines, of intersection obtained in the degenerate solutions for
finite cylinders. The actual equation of the line of intersection is obtained from an
analysis of the "e" set of coefficients obtained in the manner of the third section of this
report. Once the analysis shows that a degenerate form is present, then it is safe to
assume that the low point(s) and the high point(s) are on the line(s). These degenerate

NEGATIVE 

POSITIVE
do ,YcZC)

(a) (b)

Fig. 8 - Sign convention on do

where
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line forms will be discussed next. First to be considered are the horizontal and vertical
single line and parallel line forms, and finally the situation when the lines are not or-
thogonally oriented with respect to the HOPE plane axes.

The Low Point and the High Point

Since do is perpendicular to the HOPE plane, its direction cosines are A, B, and C.
Its axis-oriented components are do A, do B, do C. A vector do can therefore be defined
from the axis point. The tip of do lies in the HOPE plane and is called the low point. In
general terms, for XYZ coordinates, the low point is identified by the subscript "lo,"
thus (x10, Y10, Z1 ). These low points coordinates are computed as follows:

xix= Xc-doA,

y1O= yc do B, (109)

Z1l = Zc -do C.

In HOPE plane coordinates the low point is ( x'o, ybi) and is obtained by passing
(x 1 ,s y,1 , zj) through a conversion matrix.

There is a corresponding point in the top bounding plane called the high point, iden-
tified by the subscript "hi, " ViZ., (chil Yhi' Zhi), and is located by erecting 2 at the low
point. The components of the high point are therefore,

xhi = (xC + t uX) -do A,

Yhi = (YC + t uy) - do B, (110)

Zhi = (zc + uz) - do C,

where t is the length of 2 and (uX, uy, uz) are the direction cosines of Q. In HOPE plane
coordinates the high point is identified as (xh,, yh).

Single Lines

When invariants w2 and W3 (see Eqs. (69) and (70) are both zero, the curve of in-
tersection between the HOPE plane and the cylinder is not a circle or an ellipse, but
some degenerate form. Of interest are those forms resulting in a single (tangent) line
or a pair of parallel lines. An additional invariant is needed for the description of the
degenerate cases. This one, w4, is defined as

e2 2 e2 3 ell e1 3
W4 = + (111)

e3 2 e3 3 e31 e3 3

Consider first the simple situation of

x 2 = 0, (112)
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whence it develops that ell = 1 (all other coefficients = 0) and w2 = 0, W3 = 0, W4 = 0.
Figure 9 shows the line extending along the HOPE Y' axis from (0, y;.) to (0,py). In
this figure the normal from the origin to the HOPE plane is D units in length.

If the form of the equation is

(x' -h) 2 = 0,

or in expanded form,

(x'2 - 2hx + hF); (114)

then

e1l = 1, e1 3 = -h = e 3 1 , e3 3 = h2, (all others = 0).

The line extends from (-e 13 'y'l) to (-e 13 y'hi) . Computation will show that it is still
true that

W2 = 0, W3 = 0, w4 = 0.

A comparable situation exists when

y'2 = 0, (115)

in which case,

the coefficients are

e22 = 1, (all others = 0),

the invariants are

W2 = 0° W3 = 0,

the HOPE plane contains the line

from-(xi,, 0) to (hi . 0).

w4 = 0, and

Fig. 9. x' 2 = 0

::!

23 ,
r..

(113)
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Also, when

(y' - k) 2 = 0 (116)

or

Y12 - 2ky' + k2 = 0, (117)

then

the coefficients are

e22 = 1, e2 3 = -k = e3 2 , e3 3 = k 2 , (all others = 0),

the invariants are

W2 = 0, W3 = 0, N = 0,

and the HOPE plane contains the line

from (x;, -e 23) to (x.. 23)

Parallel Lines

If the equation for the intersection is

x'2 M2 (118)

then

e1l 1, e3 3 = -m 2 , all others = 0,

and it follows that

W2 = 0, W3 0, w4 < 0.

Figure 10 shows two parallel lines of intersection for Eq. 118; one extends

from (+± 1e31 Yj,) to (+ i-e 331, yjh), and the other

from (- e33 1, Yjo) to (- j 33 1, y -

If the form of the intersection equation is

(X -h) 2 = m2' (119)

then

ell = 1, e1 3 = -h = e3 1, e3 3 = (h 2 _ m2 ), (all others = 0),
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Fig. 10. x'2 = m2

and

W2 = 0, w3 = 0, w4 < O.

The two roots for x' are

Xi = + Ie1312 -e 3 3 + (-e 1 3 ) = m + h

X2 = - Ie1 31 -e 3 3 + (-e 1 3 ) = -m + h.

The two parallel lines extend

from (x;, y;.) to (x;, yPh) and

from (x2, ylo) to (x2, yhi)

A perspective view of this situation is shown in Fig. 11.

Considering y' variable. When

y'2 = n2

the coefficients are

e22 = 1, e3 3 = -n 2 , (all others = 0),

which causes the invariants to be

W2 = 0, W3 = 0, w4 < 0,

25
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Fig. 11 - Perspective view of the (x' - h)2
= m 2 solution with vectors a and b from the
origin to the ends of the cylinder axis, TL
and D, normal vector to the HOPE plane

and the two lines to extend

from (x;i, + 1e.31) to (x h,, + Ie3 3 1) and

from e.OX- e ) to (xh, -Je 33l)

Finally, if

(y' - k)2 = n2

y,2 - 2ky' + (k2 -n 2 ) = 0,

then the coefficients are

e22 = 1, e2 3 = - k = e3 2 , e3 3 = (k2 -n 2 ), (all others = 0),

the invariants are

W2 = 0, w3 = 0, w4 < 0,

or

(123)

(124)
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the y' roots are

Y1 + ( Ie23j -e33))+ (-e23) n + k (125)

Y= -(1 e2 3 e 3 3 )+ (-e 2 3 ) = n + k (126)

and the two parallel lines extend

from (x;, y;') to ,y;) and

from (x;, y2) to (x'h, y;).

The nine degenerate solutions are summarized in Table 2 which lists the equations, the
coefficient values, and/or the endpoint coordinates of the lines for the horizontal and
vertical line cases, as well as the generalized rotated case, which is discussed next.

Slopes Other Than 00 or 900

Line intersection solutions (either single or parallel) that are neither horizontal or
vertical are possible when the HOPE plane is parallel to the cylinder's axis. The X' Y'
axes are not forced to be orthogonally oriented to these line solutions, and therefore
these so-called rotated solutions are possible. An XY plane cross section through Cyl 10
of Table 1 is an example of such an intersection.

If w2 = 0 and w3 = 0, a degenerate solution is present. In addition, if the coefficient
of the x'y' term (e12 ) is nonzero, then the line(s) has (have) a slope other than 0° or 900.
If W4 < 0 the solution is a single line running from the high point to the low point. If
W4 = 0 the solution is a pair of parallel lines which have a slope equal to the slope of the
high-low point line, and whose y' intercepts can be determined by setting all x' terms in
the intersection equation to zero and solving for y'. The resulting quadratic in y' is

e2 2 Y + 2 e2 3 Y + e3 3 = °- (127)

Let the two roots be bh andb2; then the two parallel lines are

y' = (tan ¢.) x' + b, (128)

and

y' = (tan Oa) x' + h2 , (129)

where

= tan-1(hYi' loj (130)

To plot the rectangle the end-plane intersection lines are needed. The slope of these
lines is tan 6bI
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Table 2
Degenerate Line Forms of Plane-Cylinder Intersections

Coefficients
Equation ___ 1 w4 Line Coordinates

e11 e12 e13 e21 e22 e23 e 3l 1 e 32 e 33

SINGLE LINE

1) x2 = O | 1 0 0 0 0 0 0 0 0 0 (0, y.) to (0, Y1i)

2) (x'-h)2r0r
1 0 -h 0 0 0 -h 0 h2 0 (-el 3 , Yj0 ) to (-el 3 , yi~)

X2-2hx'+h 2 =O

3)y-2 = 0 0 0 0 0 1 0 0 0 0 0 (x,., 0) to (xi 0)

4) (y'-k) 2

0 0 0 0 1 -k 0 -k k2 0 (xI 0, -e 2 3) to (xi, -e2 3 )
y'2 2ky'+k2 =0

DOUBLE LINE

S) x' 2
=m

2 1 0 0 0 0 0 0 0 -in2 <0 e3 j.t ( I31YL

(- e331, yi.) to (+ ! 1, Yhi)5) x/2 = m2 l 0 0 0 0 ° ° ° -~~~~~~2m2 <0 (-I Yo o( sYi

6) (x'-h)2 = m2 1 0 -h 0 0 0 -h 0 h2 -r 2 < x = + 1e131
2 -e 33 + (-e 13 ) = m + h

xi = -T ei3 I2-e 33 + (-ei 3) =-m + h

(xi; Ylj) to (xi, Y,1 )
_(x'2, Yo) to (X2, Yhi)

7) y, 2 = n2 0 0 0 0 1 0 0 0 -n 2 <0 (xio, + Le331) to (Xi I + Yiei)
(x10, -Yi31) to (x-i,, -Fi331)

8)(y-k) 2 n2 0 0 0 0 1 -k 0 -k k2 -n 2 <0 +

y -= 1- le2312 -e33 + (-e2 3 ) =-n + k

(xiO, y') to (Xi,, yj)

_(xi', Y2) to (Xhi, Y2)

9) General * 0 * 0 * * * * * <0 Line equations
Rotated = (tan kA) x +
Non-
orthogonal y' = (tan k) x' + b2
All terms where, h1 , b2 are roots of
possible e22Y2 + 2 e2 3 y' + e33 = 0

= tanr1 (Yhi - Ylo)/( Xhi _X)

NOTE: All nine forms also have invariants w2 = e and w3 = O.

*Any value
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where

¢b = .+ 2- (131)

Let the y' intercepts of the end-plane intersection lines be b3 and b4 ; then using the high
point and the low point,

b3 = Yhi - tan Xb Xhi (132)

b4 = Y1 . - tan qhb x X10 - (133)

If we have

y' = x' tan 'b + b3

y' = x' tan Ib + b4

(134)

(135)

as equations of these lines, the coordinates of the corners of the rectangle for plotting
purposes then work out to be

xi = (b3 - b,)/den, y1 = xl tan ¢' + bl, (136)

x2 = (b 3 - b 2 )/den, Y2 = x 2 tan Xa + b2 (137)

x3 = (b 4 - b 2 )/den, y3 = x3 tan «a + b 2 '

x4 = (b4 -bl)/den, y4 = x4 tan ¢'a + b ,

(138)

(139)

where

den = tan qba - tan qb

Figure (12) shows a general configuration for the terms used to define the rotated
case.

This concludes the consideration of the degenerate line solutions for cylinder inter-
sections when the cross-sectional plane is parallel to the cylinder's axis. The sphere
intersections are next considered.

INTERSECTION BETWEEN HOPE PLANE AND SPHERE

Sphere Defined in XYZ System

If a sphere of radius r has an orthogonal coordinate system (x., Y5, Zs) whose origin
is at the center of the sphere, its equation can be expressed as

X2 + y2 + Z2 = r2 .
S (140)

and

and
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(Xhryhi)/ Fig. 12 - General configuration for
(o, b4) / ' 54; Yrotated line cases showing a rectan-

,/ x gle of intersection

Now if with respect the XYZ system the sphere's system has an

xS axis with direction cosines t11, t 2 1, t31 , a

Y axis with direction cosines t12, t22, t32; and a

Z, axis with direction cosines t1 3, t3 2 , t33;

then, the conversion equations which allow for both translation and rotation are

XS = t 11 X + t21 - Y + t3 1 - z - K4 , (141)

Y = t1 2 X + t2 2 Y + t3 2 z - K5 , (142)

Zs = t 1 3 X + t2 3 Y + t3 3 z - K6 , (143)

where

K4 = ti1 X5P + t21 YSP + t3l Zsp' (144)

K5 = t12 - + t22 - + t3 2 - z, (145)

K6 = t1 3 XSP + t2 3 YSP + t3 3 ZSP (146)

with (xsp, ysp zsp) being the center of the sphere in XYZ coordinates. This point is part
of the APT canonical form for a sphere along with the radius r. It should be noted that
K4, K5, and K6 are constants.

To express the sphere in the XYZ system it is necessary to square Eqs. (141), (142)
and (143), substitute them into Eq. (140) and regroup the resulting terms. A convenient
regrouping because of its symmetry is the following:
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(all* x + a12 * y + a13 - z + a14 ) x

+ (a2 1 . x + a2 2 y + a2 3 - z + a2 4 ) y

+ (a 3 1 . x + a3 2 * y + a3 3 - z) + a3 4 ) z

+ (a 4 l1 x + a 42 - y + a43- z + a44 ) = 0. (147)

This "a" series of coefficients is computed as follows:

a1 1 = t11 + t12 + t13 (148)

a12 = t1 l t2 1 + t1 2 t2 2 + t13 -t23 (149)

a13 = tI *t 31 + t1 2 t3 2 + t 13 - t33 (150)

a14 = -(K 4 * t-l + Ks * t12 + K6 t13 ) (151)

a2 1 = a12 (152)

21 + +t23 (153)

a23 = t2l * t3l + t22 *t32 + t23* t33 (154)

a24 = -(K4 t21 + Ks t22 + K6 t2 3 ) (155)

a3 1 = a13 (156)

a3 2 = a2 3 (157)

a33 = t31 + t32 + t33 (158)

a3 4 = -(K4- t3 1 + K 5 * t3 2 + K6 t 3 3 ) (159)

a4 1 = a14 (160)

a4 2 = a2 4 (161)

a43 = a34 (162)

a44 K2 + K2 + K2 - r2. (163)

The HOPE plane in the XYZ stem is expressed as

Ax + By + Cz - D = 0. (164)

The simultaneous solution of the HOPE plane and the sphere equation to get the inter-
section is accomplished by adding the first-degree coefficients and the constant terms.
This operation can be expressed in the form of replacement statements as follows:

a14 a14 + A/2 (165)

a24 a24 + B/2 (166)

a34 a34 + C/2 (167)

a4 4 a4 4 - D. (168)
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The remainder of the equation development for the sphere is identical to that already
presented for the cylinder on p. 9.

Simplification

In practice, because of spherical symmetry, the direction cosines for the sphere's
coordinate system are always chosen to be

til t2 l t31 1 0 0

t12 t22 t32= 1 0

t13 t23 t33 [O 0 1 (169)

As a result, the following equation simplifications can be made.

From Eqs. (144) to (146):

K4 = X

K5 = Y.P

K6 = ZsP

From Eqs. (141) to (143):

x = x -xSP

Y, = Y -YPys YYsp

z = z - z
S Sp

From Eqs. (148) to (151):

all = 1

a1 2 = °

a13 = 0

a14 = - x

From Eqs. (153) to (155):

a2 2 = 1

a2 3 = °

a24 =-Y .

From Eqs. (158) and (159):

a 3 3 = 1

a3 4 = - Z
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From Eq. (163):

a4 4 x52 + y2 + Z2 _r 2.
44 ~ P SP Sp r

From Eqs. (165) to (168):

a, 4 -4- -xsp + A/2

a24 - Y.p + B/2

a3 4 -Zs + C/2

a4 4 -. XS2 +YS +Z 2 _r 2 _D.

Or in more understandable form the sphere equation in the XYZ system is

(x -x x + (y -y)y+(z - )z

+ - ) z + x2 + Y 2 + Z2 r2] = 0 (170)

or

(x2 -( 2 x x) + (y2 -2y y) + (z 2 - 2 zs z)

+ (x2p + Y2p + z2p r2)= 0. (171)

The curve of intersection in the XYZ system is

(x2 - (2xp + A) x) + (y2 -(2 yrp + B)y) + (z2 -(2zs + C)z)

+ x
2

+ Y2 +Z 2 -r 2 -D = 0. (172)

Example

If a sphere of radius 1, centered at (x p= 0, yp= 0, zSp= 0), is intersected by the
plane x = 0 (i. e., A = 1, B = 0, C = 0, D = 0), then the curve of intersection in the xYz
system, after coefficient and constant substitution, is

X2 _ X + y 2 + Z2 _1 = 0. (173)

Since x does equal o, the intersection is a circle in the yz plane;

y2 + Z2= 1 (174)

Test on Perpendicular Distance

A valuable quantity to know when dealing with sphere intersections is the perpendicular
distance from the center to the HOPE plane. This distance, called dp is computed as
follows:

Axs + Bysp + sp (175)

(A2 + B2 + C2 )%

It is wise to make a test on the size of d p before proceeding to make computations on
the sphere's intersection.
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If 0 < dp < r, a circle of intersection is present.

If dp = r, apoint of intersection is present at (x, + rA, yr. + rB, + rC) in XYz
coordinates.

If dip > r, no intersection is present.

This concludes the presentation of the computational forms for cross sections of
cylinders and spheres. Some illustrative examples of actual plots obtained by means of
a computer program are next presented.

SOME PLOTTING EXAMPLES

A rather involved computer program, called CROSEC MOD 2. 0, has been written as
an extension of APT's Section I to implement a cross-sectional plotting capability through
cylinders and spheres. This program which is described in Ref. 2, incorporates the
previously written program for plotting cross sections through planes (Ref. 1) and con-
siderable additional material. The output is in the form of CalComp or Gerber plots
about a center, or origin, that is the tip of the normal vector from the XYZ origin to the
cross-sectional (HOPE) plane. The HOPE plane origin is represented on the plots by
a +, its axes are x' and Y, and the unit distance scale is given in each figure.

PARTNO TESTING, a simple APT program presented initially in Ref. 1 (Figs. 3
and 6, and Appendix C), is the subject of the first eight illustrations in this section.
Two definitions have been added to the part program since it was introduced initially;
these are a cylinder and a sphere:

CYL = CYLINDER/CANON, 3, 1, 0, 0, 0, 1, 1,

SPH = SPHERE/3, 1, 1, 1.

A listing for the augmented PARTNO TESTING is reproduced in Table 3, and a
perspective view of the part is presented in Fig. 13. Eight planes form a step which
has a rounded end formed by a cylinder. The sphere is inscribed inside the cylinder,
resting on the xY plane. The base point for the cylinder is (x = 3, y = 1, z = 0), and the
center of the sphere is at (x = 3, y = 1, z = 1). Both the sphere and the cylinder have a
radius of 1. The cylinder is oriented vertically.

First a HOPE plane is passed in the xy plane (z = 0). The resulting plot is shown in
Fig. 14. The cylinder gives a circle of intersection, and the sphere a tangent point.
The plane intersections result in two adjacent 2-in. squares. The circle is inscribed in
the square on the right, which is formed by planes 4, 6, 7, 8. The next HOPE
plane selected was z = 0. 5, Fig. 15, parallel to the one just described and one-half unit
above it. The one difference in the plot is that now the intersection with the sphere is
no longer a tangent point but rather a circle of radius 0. 87 which is concentric with the
cylinder's circle of intersection.

Figure 16 shows the intersection with the Xz (y = 0) plane. This plane is tangent to
both the cylinder and the sphere. The cylinder's intersection is a vertical line segment
five units long, from (x' = 3, y' = 0) to (x' = 3, y' = 5). The sphere gives a tangent point
at (x' = 3, y' = 1). The plane intersections are labeled. A similar situation for the
cylinder and sphere intersections exists in Fig. 17 for the cross section plane x = 4.
The cylinder intersection is again a line, and the sphere intersection a point.

The cross-sectional plane that created the plot for Fig. 18 is inclinded at 450 to
both the x and z axes while being parallel to the Y axis. The X intercept point is
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Table 3
Augmented PARTNO TESTING

PARTNO TESTING r
NOPOST
CLPRNT
SYN/P,POINT,C,CIRCLE,PL,PLANE

P1 -P/0,0,0
P2 -P/2,0,0
P3 'P/2,2,0
P4 =P/0,2,0
P5 =P/0,0,2
SETPT -P/-5,-5,0
SETPT2 -P/6,-i, 3
PLI =PL/P1,P2,P3
PL2 -PL/1,0,0,0
PL3 -PL/P5,PARLEL,PL1
PL4 -PL/PARLEL,PL2,XLARGE,2
PL5 -PL/PARLEL,PL1,ZLARGE,1
PL6 -PL/0,1,0,0
PL7 =PL/PARLEL,PL6,YLARGE,2
PL8 -PL/PARLEL,PL2,XLARGE,4
CYL -CYLNDR/CANON,3,1,0,0,0,1,1

SPH-SPHERE/3,1,1,1
HOXYMIN-POINT/-5,-5,-5
HOXYMAX-POINT/10,10,10
PP1-POINT/1 ,0o0
PP2-POINT/0,1,0
PP3-POINT/0,0,1
HOPE1-PLANE/ 0,0,1,0
HOPE2-PLANE/0,0,1,0,5
BOPE3=PLANE/0,1,0,0,
HOPE4-PLANE/1,0,0,4
HOPE5'PLANE/0,7071068,0,0,7071068,2,8284271
HOPE6-PLANE/0,981,0,0,196,3.4335
HOPEN-PLANE/PP1,PP2,PP3

FINI

U
Fig. 13 - Augmented PARTNO TESTING Fig. 14. z = 0
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1 4 ~~8

Fig. 15. z =0. 5 Fig. 16. Y 0

/ 2 3\ 5

7

6~~~~~

6

Fig. 17. x = 4 Fig. 18. x cos 45' + z cos 45° = 2.828

(x 4, y = 0, z = 0) and the Z intercept point is (x = 0, y = 0, z = 4). The plane inter-
sections are identified and it is seen that the intersection for planes 3 and 4 are coin-
cident. Planes 1 and 8 also have a coincident intersection. The cylinder's intersection
is an ellipse bounded by planes 4, 6, 7, and 8. The semimajor axis is A. The sphere's
intersection is a circle of radius 1 because the HOPE plane passes through its center.

The plot of Fig. 19 is an interesting constrast with Fig. 18 because of the increased
size of the ellipse and in the fact that the four planes to which it is tangent (4, 6, 7, 8)
form the boundary of the external rectangle. The HOPE plane that produced this plot is
again parallel to the Y axis, only this time inclined at 78. 70 to X and 11. 30 to Z. It has
an X intercept point of (x = 3. 5, y = 0, z = 0) and passes through the sphere's center.
The intersections for planes 3 and 4 are not coincident; neither are those for planes
1 and 8. The intersection with plane 2 is not shown in Fig. 19 because it was beyond the
bounds set by the HOXYXIIN and HOXYMAX cards, namely.

HOXYMIN = POINT/-10, -10, -10,

HOXYMAN = POINT/10, 10, 10.

That is, plane 2 which is the YZplane (x = 0) contains the Z axis. The Z axis intercept
point in this case (x = 0, y = 0, z = 17. 5) is beyond the plotting limits and was not plotted.
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3 /5/l

CD:6r\4/

Li
Fig. 19. x cos 78.7° + z cos 11.3° = 3.4335

The last plot related to PARTNO TESTING is Fig. 20. It is for the cross-sectional
plane x + y + z = 1. This plane and its cross section with the eight planes is discussed
in some detail in Ref. 1, pp. 7-10. This HOPE plane does not intersection the sphere,
but does give an ellipse of intersection with the cylinder in addition to the previously
discussed series of plane intersections. This ellipse is tangent to the lines of intersec-
tion from planes 4, 6, 7, and 8, with its center at HOPE dimension (x' = 3. 27, y' = 2. 83).
It semimajor axis is 1. 73, semiminor axis is 1. 00, the eccentricity is 0. 8165, and it is
tilted at 600 with respect to the horizontal. This amount of detail is given to illustrate
the output of the program and to emphasize the fact that the length of the semimajor
axis of an ellipse of intersection with a cylinder is always equal to the radius of the
cylinder being intersected.

Fig. 20. x + y + z = 1

6
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The next example of representative plots is given in Fig. 21, where the twelve
sample cylinders of Table 1 are sliced by four cross-sectional planes to give a total of
48 plots. All twelve cylinders have a radius of 1. The point and vector sketches of
Table 1 are helpful in getting a feeling for the space orientation of these twelve sample
cylinders. The first six cylinders have both their axis points on, and their axis vectors
along, one of the major axes, x, Y, or z. Cylinders 7, 8, and 9 are characterized by
having the axis point on one of the major axes and one vector component nonzero. The
last three cylinders, 10, 11, and 12, have their axis points removed from a major axis
and one nonzero vector component.

The cross-sectional planes, left to right, are the three major (principal) planes
(xY, Xz, Yz) and the equianglar plane x + y + z = 1. Lettering the planes left to right as
a, b, c, d, along with the number of the cylinder, allows a two-dimensional referencing
to the plots, such as 5d, an example of a truncated ellipse, and 12c, which is an example
of a single tangent line.

The a, b, and c columns of plots are readily understood because they represent the
traditional views of mechanical drawing, namely front, plan, and end. Referring to the
axes of a plot asx' andY', for column a, x' = X axis, Y' = Y axis. For columnb, x' = xaxis
and Y' = Z axis. For column c, x'= X axis, Y' = Z axis. The plotting axes for column d are
assigned in the usual manner for CROSEC. The HOPE plane origin is on the tip of the
normal vector to the plane, and the X' axis runs from the origin toward the X-axis inter-
cept with the HOPE plane. For the plane x + y + z = 1, the origin is at (1/3, 1/3, 1/3)
and the X axis intercept at (1, 0, 0). The X' axis starts at (1/3 1/3 1/3) and goes
through (1, 0, 0), while the Y' axis has direction cosines (0, J171w, >1 1/2), begins at
(1/3, 1/3, 1/3), and is parallel to the line from (0, 0, 1) to (0, 1, 0). See Fig. 22 and
Ref. 1, pp. 4-6. A given HOPE plane axes' orientations do not change in a given column
series of 12.

Only one example of a truncated ellipse (5d) has been included in this set of 48 plots.
The others have been suppressed for the sake of clarity.

CYL 12 breaks the expected pattern established in CYL 7 through CYL 11 by having
a set of direction cosines for its vector identical to those of CYL 11 rather than CYL 9.
The base point for CYL 12 is in the Xz plane at (1, 0, 1) and the vector is parallel to the
YZ plane but inclined at an angle. This accounts for the single, sloping line of the plot
of 12c.

There is a common scale for all the plots. The rectangles are all five units long.
This arises from the arbitrary property that all cylinders are considered to have a length
of five units in CROSEC.

To test his understanding of the cylinder types, let the reader answer this question.
Of the twelve defined classes of cylinders, what class would a cylinder be whose point
was at (5, 0, 0), whose vector had the cosines (cos 450, 0, cos 450) and any nonzero
radius?

Would it be a class 7 with the point being on the X axis ?

No, it would not because the uy vector component is zero.

The answer from Table 1 is type 12. It is not on the Z axis and its u,/ 0.
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CYLINDER/CANON, HOPE PLANES

| i (a) (b) (c) (d)
POINT I VECTOR I RADIUS Z=O Y cO X=O X+Y+Z1=

I ______ ___________

I r I UNIT= Ui

CYLI=0,0,0, 1,0,0, 0 + + ii 

CYL2=,0,00, I -1,0,0, I 0 + >i

CYL3=0, 0, 0, 0,-1,0, I

CYL4=0, 0,0, O,-l.a I 0 Io

I ICYL560A 0, 0,0,1 1 1

CY6 0 0 ,I O'' I'

CYL7= 0, 0,0, ICOS60 COSI30 0, I I (/

CYL8 = O 1, O. i0, COS 60° COS 30, I )r \/ 

CYL9=0,0, 1, COS60,0,-COS,30° I

CYLIO = 1,1,0, IjCOS 60° COS 30°0,l I | )C )(D

I I +

CYLII =0,1, 1, 0,_COS_60°_COS_30° I _G

CYL12 =1,0,1, 0, COS060COS30° I

Fig. 21 - Cross-sections of the 12 single cylinders; z =0, y =0, x =0, x + y + z=1
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z

(1/3,1/3, I/3) y

Fig. 22 - Emphasizing the location of the
origin and direction of the X' and Y' axes for

,@ \\yi the HOPE plane, x + y + z = 1

CONCLUSION AND RECOMMENDATION

This report of computational forms and its implementing computer program
CROSEC MOD 2. 0 clearly demonstrate the feasibility of plotting the forms obtained from
cross-sectional cuts through cylinders and spheres.

The tested method of local coordinate systems in the surfaces and on the HOPE
plane could obviously be extended to include APT-defined ellipses and parabolas in the
plane as well as three-dimensional cones and a generalized quadric surface.

The availability of cross-sectional forms for the finite cylinder leads naturally into
the bounded geometry of the APT IV generation. The cylinder definition should be ex-
tended to include length. The considerations for plane intersections should be reexamined
in the light of the APT IV geometry in hopes of eliminating unwanted internal lines by
means of the bounded surface definition.

Finally, the feasibility of a data structure should be seriously considered as a
further natural extension of this work.
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